
推理模型其实无需「思考」?伯克利发现有时跳过思考过程会更快、更准确
推理模型其实无需「思考」?伯克利发现有时跳过思考过程会更快、更准确当 DeepSeek-R1、OpenAI o1 这样的大型推理模型还在通过增加推理时的计算量提升性能时,加州大学伯克利分校与艾伦人工智能研究所突然扔出了一颗深水炸弹:别再卷 token 了,无需显式思维链,推理模型也能实现高效且准确的推理。
当 DeepSeek-R1、OpenAI o1 这样的大型推理模型还在通过增加推理时的计算量提升性能时,加州大学伯克利分校与艾伦人工智能研究所突然扔出了一颗深水炸弹:别再卷 token 了,无需显式思维链,推理模型也能实现高效且准确的推理。
千亿参数内最强推理大模型,刚刚易主了。32B——DeepSeek-R1的1/20参数量;免费商用;且全面开源——模型权重、训练数据集和完整训练代码,都开源了。这就是刚刚亮相的Skywork-OR1 (Open Reasoner 1)系列模型——
字节跳动豆包团队今天发布了自家新推理模型 Seed-Thinking-v1.5 的技术报告。从报告中可以看到,这是一个拥有 200B 总参数的 MoE 模型,每次工作时会激活其中 20B 参数。其表现非常惊艳,在各个领域的基准上都超过了拥有 671B 总参数的 DeepSeek-R1。有人猜测,这就是字节豆包目前正在使用的深度思考模型。
近日,上海财经大学统计与数据科学学院张立文教授与其领衔的金融大语言模型课题组(SUFE-AIFLM-Lab)联合数据科学和统计研究院、财跃星辰、滴水湖高级金融学院正式发布首款 DeepSeek-R1 类推理型人工智能金融大模型:Fin-R1,以仅 7B 的轻量化参数规模展现出卓越性能,全面超越参评的同规模模型并以 75 的平均得
随着硅基流动的 SiliconCloud 等平台上线 DeepSeek-R1,市面上出现了不少测试各大厂商 API 服务的评测文章及反馈,不过,从我们收到的不少内容及反馈来看,其中的对比测试方式多有漏洞,内容质量参差不齐。
尽管 DeepSeek-R1 在单模态推理中取得了显著成功,但已有的多模态尝试(如 R1-V、R1-Multimodal-Journey、LMM-R1)尚未完全复现其核心特征。
近年来,大语言模型(LLM) 的快速发展正推动人工智能迈向新的高度。像 DeepSeek-R1 这样的模型因其强大的理解和生成能力,已经在 对话生成、代码编写、知识问答 等任务中展现出了卓越的表现。
随着 DeepSeek-R1 的流行与 AI4Math 研究的深入,大模型在辅助形式化证明写作方面的需求日益增长。作为数学推理最直接的应用场景,形式化推理与验证(formal reasoning and verification),也获得持续关注。
仅仅过了一天,阿里开源的新一代推理模型便能在个人设备上跑起来了!昨天深夜,阿里重磅开源了参数量 320 亿的全新推理模型 QwQ-32B,其性能足以比肩 6710 亿参数的 DeepSeek-R1 满血版。
又一个「DeepSeek 王炸组合」,来了。2 月 28 日,两个国民级应用,百度文库和百度网盘,全量接入了 DeepSeek-R1 满血版。